
Basic Python
Programming

Hans-Petter Halvorsen

https://www.halvorsen.blog

https://www.halvorsen.blog/documents/programming/python/

Free Textbook with lots of Practical Examples

https://www.halvorsen.blog/documents/programming/python/

Additional Python Resources

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

• Basic Python Program
• Variables in Python
• Calculations in Python
• Numbers and Strings
• Built-in Functions
• Python Standard Library
• Using Python Libraries, Packages and Modules
– NumPy
– Matplotlib

Contents

• We use the basic IDLE editor or another Python
Editor like Spyder (included with Anaconda
distribution) or Visual Studio Code, etc.

Basic Python Program

print("Hello World!")

• Python IDLE
• Spyder (Anaconda distribution)
• PyCharm
• Visual Studio Code
• Visual Studio
• Jupyter Notebook
• …

Python Editors

Spyder (Anaconda distribution)

Code Editor window

Console window

Variable Explorer window

Run Program button

https://www.anaconda.com

https://www.anaconda.com/

• Variables are defined with the
assignment operator, “=”.
• Python is dynamically typed, meaning

that variables can be assigned without
declaring their type, and that their
type can change.

Variables in Python

> x = 3

Variables in Python
> x = 3
> x
3

Creating variables: We can use variables in a calculation like this:
> x = 3
> y = 3*x
> print(y)

We can implement the formula
𝑦(𝑥) = 𝑎𝑥 + 𝑏 like this:

> a = 2
> b = 4

> x = 3
> y = a*x + b
> print(y)

𝑦(𝑥) = 2𝑥 + 4

A variable can have a short name (like x and y) or a more descriptive name (sum, amount, etc).
You don need to define the variables before you use them (like you need to to in, e.g., C/C++/C).

Here are some basic rules for Python variables:
• A variable name must start with a letter or the

underscore character
• A variable name cannot start with a number
• A variable name can only contain alpha-numeric

characters (A-z, 0-9) and underscores
• Variable names are case-sensitive, e.g., amount,

Amount and AMOUNT are three different variables.

Variables in Python

Calculations in Python

> a = 2
> b = 4

> x = 3
> y = a*x + b
> print(y)

> x = 5
> y = a*x + b
> print(y)

We can use variables in a calculation like this:
𝑦(𝑥) = 2𝑥 + 4

𝑦(3) = ?

𝑦(5) = ?

There are three numeric types in
Python:
• int
• float
• complex

Numbers

> x = 1 #int
> y = 2.8 #float
> z = 3 + 2j #complex number

The symbol # is used for
commenting the code

> type(x)
> type(y)
> type(z)

Check the Data Type:

If you use the Spyder Editor, you can see the data
types that a variable has using the Variable
ExplorerVariables of numeric types are

automatically created when you
assign a value to them, so in normal
coding you don't need to bother.

Strings
• Strings in Python are surrounded by

either single quotation marks, or
double quotation marks.

• 'Hello' is the same as "Hello".
• Strings can be output to screen

using the print function. For
example: print("Hello").

> text = ”Hello“
> print(text)

Manipulating Strings

a = "Hello World!"
print(a)
print(a[1])
print(a[2:5])
print(len(a))
print(a.lower())
print(a.upper())
print(a.replace("H", "J"))
print(a.split(" "))

There are many built-in functions form manipulating
strings in Python.
The Example shows only a few of them:

Strings in Python are arrays of
bytes, and we can use index to get
a specific character within the
string as shown in the example
code.

String Concatenation

String Input
> print("Enter your name:")
> x = input()
> print("Hello, " + x)

The following example asks for the user's name, then, by using the input() method,
the program prints the name to the screen:

We can merge strings like this: > a = "Hello"
> b = "World"
> c = a + b
> print(c)

Python consists of lots of built-in functions.
• Some examples are the print function that we already

have used (perhaps without noticing it is a built-in
function) or the functions for manipulating strings.

• Python also consists of different Modules, Libraries or
Packages. These Modules, Libraries or Packages consists
of lots of predefined functions for different topics or
areas, such as mathematics, plotting, handling
database systems, etc.

• In another video we also will learn to create our own
functions from scratch.

Built-in Functions

• Python allows you to split your program into modules
that can be reused in other Python programs. It comes
with a large collection of standard modules that you
can use as the basis of your programs.

• The Python Standard Library consists of different
modules for handling file I/O, basic mathematics, etc.

• You don't need to install the modules in the Python
Standard Library separately, but you need to important
them when you want to use some of these modules or
some of the functions within these modules.

Python Standard Library

The math module has all the basic math
functions you need, such as:
• Trigonometric functions: sin(x), cos(x), etc.
• Logarithmic functions: log(), log10(), etc.
• Statistics: mean(), stdev(), etc.
• Constants like pi, e, inf, nan, etc.

math Module
Python Standard Library

math Module
If we need only the sin() function, we can do like this:

If we need a few functions, we can do like this:

If we need many functions, we can do like this:

from math import sin

x = 3.14
y = sin(x)

from math import sin, cos

x = 3.14
y = sin(x)
print(y)

y = cos(x)
print(y)

from math import *

x = pi
y = sin(x)
print(y)

y = cos(x)
print(y)

…

import math
x = 3.14
y = math.sin(x)
print(y)

We can also do like this:

Hans-Petter Halvorsen

https://www.halvorsen.blog

Using Python Libraries,
Packages and Modules

• Rather than having all its functionality built into its core,
Python was designed to be highly extensible.

• This approach has advantages and disadvantages.
• A disadvantage is that you need to install these packages

separately and then later import these modules in your code.
• Some important packages are:

– NumPy - NumPy is the fundamental package for scientific
computing with Python

– Matplotlib – With this library you can easily make plots in
Python

Python Packages/Libraries

Installing Packages/Libraries
• If you have installed Python using the

Anaconda distribution, all the most used
Python Packages/Libraries are included
(NumPy, Matplotlib, +++)

• Else, you typically use PIP to install Python
packages

PIP
• PIP is a Package Manager for Python packages/modules
• With PIP you can download and install Python

packages/modules from the Python Package Index (PyPI)
• What is a Package? A package contains all the files you need

for a module. Modules are Python code libraries you can
include in your project.

• The Python Package Index (PyPI) is a repository of Python
packages

• Typically you just enter “pip install <packagename>“
• PIP uses the Python Package Index, PyPI as a source, which

stores almost 200.000 Python projects
https://pypi.org

https://pypi.org/

Command Prompt (cmd)

cd AppData\Local\Programs\Python\Python37-32\Scripts

Use PIP from the Command Prompt in Windows:

Command Prompt - PIP

C:\Users\hansha\AppData\Local\Programs\Python\Python37-32\Scripts\pip install camelcase

Example: Install Python package “camelCase”:

pip install camelcase

pip uninstall camelcase

Command Prompt – PIP

C:\Users\hansha\AppData\Local\Programs\Python\Python37-32\Scripts\pip list

pip list

Get overview of installed Python Packages:

Anaconda Prompt
If you have installed Python with Anaconda Distribution, the most popular Python
Packages/Libraries have already been installed for you, and you don’t need to do anything.
But if you need a package that is not installed, you can use Anaconda Prompt (just search for
it using the Search field in Windows)

pip uninstall camelcase

pip install <packagename>

pip install camelcase

Using libraries

import numpy as np

x = 3

y = np.sin(x)

print(y)

import packagename as alias

.. Your Python code

You need to use the import keyword on top of you Python script:

Example: Using numpy:

• The only prerequisite for NumPy is Python
itself.

• If you don’t have Python yet and want the
simplest way to get started, you can use the
Anaconda Distribution - it includes Python,
NumPy, and other commonly used packages
for scientific computing and data science.

• Or use “pip install numpy“

NumPy
pip install numpy

https://numpy.org

https://numpy.org/

NumPy
import numpy as np

x = 3

y = np.sin(x)

print(y)

Basic NumPy Example: In this example we use both the math module in the
Python Standard Library and the NumPy library:

import math as mt
import numpy as np

x = 3

y = mt.sin(x)
print(y)

y = np.sin(x)
print(y)

As you see, NumPy also have also similar functions
(e.g., sim(), cos(), etc.) as those who is part of the
math library, but they are more powerful

• Typically you need to create some plots or charts. In order to
make plots or charts in Python you will need an external library.
The most used library is Matplotlib

• Matplotlib is a Python 2D plotting library
• Here you find an overview of the Matplotlib library:

https://matplotlib.org
• Matplotlib is included with Anaconda Distribution
• If you are familiar with MATLAB and basic plotting in MATLAB,

using the Matplotlib is very similar.
• The main difference from MATLAB is that you need to import the

library, either the whole library or one or more functions.

Matplotlib
import matplotlib.pyplot as plt

https://matplotlib.org/

Here are some plotting functions that you will use a lot:
• plot()
• title()
• xlabel()
• ylabel()
• axis()
• grid()
• subplot()
• legend()
• show()

Matplotlib

Matplotlib

import matplotlib.pyplot as plt

x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
y = [5, 2,4, 4, 8, 7, 4, 8, 10, 9]

plt.plot(x,y)
plt.xlabel('Time (s)')
plt.ylabel('Temperature (degC)')
plt.show()

In this example we have two arrays with data. We want to plot x vs. y. We can assume x is
a time series and y is the corresponding temperature in degrees Celsius.

Matplotlib in Spyder
Typically you want to show figures and plots in separate windows

Matplotlib
import numpy as np
import matplotlib.pyplot as plt

x = [0, 1, 2, 3, 4, 5, 6, 7]

y = np.sin(x)

plt.plot(x, y)
plt.xlabel('x')
plt.ylabel('y')
plt.show()

Example: Plotting a Sine Curve

If you want grids you can use the grid() function

Note! The curve is not smooth
due to few data points

Matplotlib
import matplotlib.pyplot as plt
import numpy as np

xstart = 0
xstop = 2*np.pi
increment = 0.1

x = np.arange(xstart,xstop,increment)
y = np.sin(x)

plt.plot(x, y)
plt.xlabel('x')
plt.ylabel('y')
plt.show()

Improved Solution: Plotting a Sine Curve

Better!

Additional Python Resources

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

